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Abstract

The human genome with approximately 3×109 base-pairs stores a large amount of information
crucial for the proper develeopment and functions of an organism. But there also exist mech-
anisms, external to the underlying DNA sequence of an organism that take part in regulating
gene expressions in different cell types. These external mechanisms are typically called the
epigenetic factors. Their examples include modifications in the chromatin structure through
histone modifications, where histones are the chief protein components of the chromatin.

Study of epigenetic factors has gained interest and impetus in the last couple of years due to
their roles in diseases. Their precise role in gene regulation is still poorly understood. Genome-
wide maps of various histone modifications are now available across various cell-types. In this
work we focus on high-resolution maps of 21 histone methylations from Barski et al. in CD4+
T cells.

Using support vector machines (SVMs), we show that histone modifications achieve near
perfect accuracy in predicting the gene expression levels in CD4+ T cells. The results by SVM
are in congruence with known facts in biology. Since, it is impractical to get such genome-wide
maps of all tissues and with the remarkable characterizability of the histone modifications, we
correlate the histone modifications in one cell type to the gene expression levels in other tissues.
When applied specifically to Heart, the prediction accuracy has still been good.

On the other hand when attempted to use the relevant histone modifications data in identi-
fying tissue specific signals in promoters across genome, their performance relatively decreased.
Hence, for the second part, we propose a model that, along with the histone modifications,
also includes an additional set of features deduced from performing a Markov analysis of the
promoter sequences to help us identify tissue specific signals in promoters.
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Chapter 1

Introduction

“There is a paradox in the growth of scientific knowledge. As information accumulates in
ever more intimidating quantities, disconnected facts and impenetrable mysteries give way to
rational explanations, and simplicity emerges from chaos.” This statement encompasses many
of the challenges faced by sciences today – some of these challenges faced since even earlier than
the last century. For a field like molecular biology, which has mainly advanced in the last 5-6
decades, especially with the discovery of the structure of the DNA in 1953, this is absolutely
fitting. Technologies have evolved and advanced. Things which were unclear earlier are better
understood now, but also making us realize the vastness we are dealing with. Overall, the
underlying simplicity in nature has supposedly emerged albeit our comprehension still remains
disconnected.

It is amazing how even after the discovery of the cell in 1665 by Hooke, it took about
174 years to understand and develop the cell theory in 1839. Every known living organism
is composed of one or more of these cells – the basic structural and functional units. These
cells amongst many other things store the necessary information required for regulating their
individual functions, which is also passed on to the next generation of these cells. We call this
information, the hereditary information, as – the DNA. It is a sequence of nucleotides composed
of adenine (A), cytosine (C), guanine (G), and thymine (T). This complete DNA sits inside the
nucleus of every single cell, divided into 23 pairs of linear molecules called chromosomes, 22 pairs
of autosomes and a pair of sex chromosomes. These chromosomes are packaged by proteins into
a structure called the chromatin which is a complex formed by the DNA and proteins. The
DNA helps each cell determine its proper functioning. Every cell in an organism, though with
the completely same DNA (called the genome of the organism) to work with, can understand its
own distinct function. This genome is necessary to eventually form the proteins that make and
operate an organism. And there are segments of this genome, called as ‘genes’, that correspond
to a single protein. Every such cell, itself, ‘knows’ the function of each gene to produce the
necessary gene products (the RNA and proteins) from them in right quantities and also knows
‘when’ and ‘where’ it is to be produced. In a nutshell this information flow happens as:

DNA
transcription−−−−−−−−→ RNA

translation−−−−−−−→ protein

This production of other bio-molecules from the DNA is known as gene expression. No
cell ever picks up information (forms products) from a gene that it doesn’t require. So not all
genes are always expressed and whenever they are, the expression level varies. This exercise
of controlling the gene expression is called gene regulation. It can take place at any step in
the above process from DNA to RNA to proteins and there are many factors effecting this
regulation. The same factors can, at times, bring about regulation in multiple ways.

15



16 CHAPTER 1. INTRODUCTION

In this work we have focused on a certain kind regulatory factors, called epigenetic factors,
that are responsible for chromatin structure remodeling, among other things, thus effecting
changes and regulating gene expression levels. Further in this chapter, we will (a) delve little
more into the cell and understand the packaging of the DNA in an eukaryotic cell; (b) get in-
troduced to histone proteins that form the major portion of the chromatin and are the entities
that undergo modifications, thus causing changes in the chromatin structure; and (c) talk about
how the thesis has been laid out in the chapters ahead.

1.1 Cells and DNA

Cells are highly diverse. We have known several single and multi-cellular organisms. That
there is variety in individual particulars and at the same time constancy in the fundamental
mechanisms is astonishing. All cells on earth:

• store their hereditary information in the same linear chemical code (DNA)

• transcribe portions of hereditary information in the same intermediary form (RNA)

• translate RNA into protein the same way

These basic principles of biological information transfer are simple enough but we are very well
aware that living cells are highly complex. Humans, the most complex of all known species,
have about 210 different cell types that can be classified on the basis of the tissue of their origin.
On the basis of how the cell, that holds the complete genome of the organism, structures itself,
we classify living organisms into prokaryotes and eukaryotes. Eukaryotes are the ones that keep
their DNA inside a nucleus, a membrane bounded intra-cellular compartment, while there is no
distinct compartment to house the DNA in prokaryotes. A human body has enough DNA to
span the complete solar system. Every single cell has the same DNA of approx. 2 metres in
length when stretched out end-to-end (about 3.2 x 109 nucleotides long) and there are so many
cells in the human body. This gives a compaction ratio of nearly 10,000-fold. This packaging
of the DNA with such high compaction ratio is discussed ahead.

1.2 Packaging of DNA in Eukaryotic Cells

In eukaryotes, the DNA is stored inside the nucleus of a cell. This nucleus is nearly 6µm in
diameter. The DNA is stored by dividing it into set of chromosomes. For instance, humans
have their DNA distributed over 24 chromosomes, 22 pairs of autosomes and a pair of sex chro-
mosomes. The Figure 1.1 below shows one such arbitrary chromosome. Each such chromosome
consists of a long linear DNA molecule and the protein that binds and folds the DNA into a
compact structure. This complex of DNA and proteins is called the chromatin. The protein
that folds the DNA and causes the most basic level of compaction in the form of nucleosomes is
a bead like structure called histone octamers. Exactly 146 base pairs of the DNA get wrapped
1.65 turns around a histone octamer. These histone octamer proteins have their Nitrogen (N)-
terminals as tails hanging from them. The assembly of histone octamers in Figure 1.2 by two
molecules each of histones H2A, H2B, H3 and H4 demonstrates these N-terminals. Thus, there
are parts of the DNA that are inaccessible due to such compact winding and the genes in that
portion of the DNA are inactive. While the part of the DNA that is accessible makes the
corresponding gene(s) available for expression.
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Figure 1.1: The chromatin structure. (Adapted from Epigenomics Scientific Background. ID:

NBK45788, NCBI Bookshelf)

Figure 1.2: The assembly of a histone octamer. (Molecular Biology of the Cell. 4th edition. ID:

NBK26887, NCBI Bookshelf)

1.3 Histones & their modifications

It is the tails of these histone cores that particularly undergo modifications [Kouzarides, 2007].
Since they are proteins, a particular amino acid of the 20 amino acids found in proteins undergo
specific modifications like methylations, acetylations, phosphorylations etc. Depending upon
the number of molecules of the modifiers taking part in modification it could be either a mono-
, di- or tri- modification. These modifications can bring about changes like displacing the
nucleosomes causing loosening/rearranging of the compactly bound structure that could make
certain inaccessible regions accessible or vice-versa, in other words could cause remodeling of the
chromatin structure and can regulate gene expression. These histone proteins are observed to
be highly conserved across all eukaryotes. The Table 1.1 below enlists various types of identified
modifications.

The nomenclature for these histone modifications is explained with the help of Figure 1.3.
On the basis of experiments performed and studies conducted, it is believed that these hi-

stone modifications can participate in gene regulation in 2 ways: directly affecting chromatin
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Amino acid Modification Abbr.

(K) Lysine mono-methylation me1
di-methylation me2
tri-methylation me3

acetylation ac
mono-ubiquitylation ub
poly-ubiquitylation ubn

(R) Arginine mono-methylation me1
di-methylation (symmetrical) me2s

di-methylation (asymmetrical) me2a
(S) Serine phosphorylation ph
(T) Threonine phosphorylation ph
(E) Glutamate ADP-ribosylation ar

Table 1.1: Various types of identified modifications on some amino acids

Figure 1.3: Nomen clature for histone modifications

structure by altering the charges of histone proteins and causing relaxation of chromatin struc-
ture; or indirectly by serving as recognition and binding sites for various classes of effector
proteins.

These modifications are also termed as epigenetic factors because they are brought about by
mechanisms external to the underlying DNA sequences. For instance the various methylations
and acetylations can come from the food we eat. Also it is very well known that pregnant
women are advised on more folic acid or folate as it aids rapid cell division and growth. These
advices are made with the aim of epigenetically enhancing specific capabilities of an individual.

Some more information on the structure of the nucleosome core particle to know how the
DNA is packaged can be looked at in Appendix A.

1.4 Outline

This chapter covered the necessary introduction to the domain – molecular biology. We will
now move on and focus on our work in the following chapters. Chapter 2 describes the data –
specifically, answers to the questions : ‘how’ and ‘from where’; and the goals we set for ourselves
in the 2 parts of this work. Chapter 3 discusses our classification model, methodology adopted
and results for part I while chapter 4 looks into the corresponding model for part II. Concluding
contributions of this thesis and proposed future directions that this work can take are presented
in chapter 5.



Chapter 2

This Work

As mentioned earlier, we have attempted to focus on epigenetic factors influencing gene regu-
lation. Thus, we set out to collect this histone modifications’ data and the corresponding gene
expression levels. In the sections that follow, we highlight the goals and discuss preprocessing
of the collected data.

2.1 Goals

We decided to use the histone modifications at the promoter regions of genes in CD4+ T cells
to help us characterize the average gene expression levels thereof. Though we started of with
expression levels only in the T cells, while working along with the modifications, based on some
initial results, we surmised that these modifications or specifically the methylations could also
hold some characteristic information with respect to the tissue specificity of promoters.

Summarily, our goals are:

1. To predict expression level of a gene by histone modifications at its promoters.

2. To characterize tissue specificity of promoters using these histone modifications.

Quite evidently, the two parts of work we discussed at the end of the last chapter pertain to
these two goals.

2.2 Collecting genome-wide histone modifications’ data

Barski et al. in 2007 [Barski et al., 2007] have particularly generated high-resolution profile
maps for genome-wide distribution of 20 histone lysine and arginine methylations as well as the
distribution of histone variant H2A.Z, RNA polymerase II and the insulator binding protein
CTCF across the human genome. Out of these we have particularly worked with only the
distribution of histone methylations. They have identified typical patterns of these histone
methylations exhibited at the promoters, insulators, enhancers and transcribed regions of the
genome. They have successfully observed that monomethylation of H3K27, H3K9, H4K20,
H3K79, and H2BK5 are all linked to gene activation, whereas trimethylation of H3K27, H3K9,
H4K20, and H3K79 are linked to repression. The newly provided insights by their data into
the function of histone methylations and chromatin organization in genomic functions also
forms the basis for us to work with their data. With the genome wide histone modifications’
data, we collected the corresponding gene expression levels in CD4+ T cells from Crawford et
al. [Crawford et al., 2006].

19



20 CHAPTER 2. THIS WORK

The Figure 2.1 below is a snapshot of the UCSC Genome Browser, developed and maintained
by the Genome Bioinformatics Group at University of California Santa Cruz (UCSC), USA. This
browser contains the reference sequences and working draft assemblies for a large collection of
genomes. It provides a rapid and reliable display of any requested portion of genomes at
any scale, together with dozens of aligned annotation tracks of known genes, predicted genes,
mRNAs, CpG islands etc. Most of these tracks are computed at UCSC from publicly available
sequence data. The remaining tracks are provided by collaborators worldwide. Users can also
add their own custom tracks to the browser for educational or research purposes.

The figure is a snapshot of the 84,000 bp long region on chromosome 12 from coordinate
6,742,459 to 6,826,779 of the human genome assembly 18. And the browser shows us all the
necessary details like existence of certain histone methylation tag-counts, specifically H3K27me1
and H3K27me3, along with the genes present in this region. Similarly one could specify any
other part of the genome to view many such details peculiar to those regions. The complete set
of histone methylations from Barski et al. [Barski et al., 2007] can be browsed in this manner.

Figure 2.1: UCSC Genome browser snapshot: 84,000 bp long region on chromosome 12 from coordinate

6,742,459 to 6,820,000 of the human genome assembly 18

To determine if these modifications are associated with elevated levels of nearby gene expres-
sion, we determined the average expression value of genes that had nearby clusters of histone
modifications. This modifications’ data appears as tag counts lying in 200 bp long windows
spread across the whole genome. We calculated the tag density (number of tags per base pair)
located in the promoter regions of the genes in CD4+ T cells, typically 3 kb windows (2 kb
upstream and 1 kb downstream) relative to the transcription start sites (TSS). These TSS for
the genes in CD4+ T cells were learnt by mapping the expression probes from the GenBank
database [#ref/appendix] to the UCSC known genes database.

The Figure 2.2 shows an example set of histone methylation patterns at active and inac-
tive genes in the genome. Arbitrarily, at chromosome 2 in the window 191600000 to about
192000000, it shows an active and inactive region and the corresponding genes in those regions
namely MYO1B (inactive), STAT1 and STAT4 (active), not necessarily the CD4+ T cells’
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genes. Consider the red-marked histone methylation H3K27me3. Very easily, even visible to
the naked eye, this modification follows a structure. It appears more dense in the inactive region
and comparatively almost nil or very less density in the active region.

Figure 2.2: A typical example of histone methylation patterns at active and inactive genes (Barski et

al., Cell 129:823-837, 2007.)

When we compared the gene expression levels in CD4+ T cells with the density of this
particular methylation, H3K27me3, we did observe a correlation value of ρ = −0.4633. It is
shown in Figure 2.3 below.

Figure 2.3: Scatter analysis of H3K27me3. This modification shows a negative correlation with gene

expression levels in CD4+ T cells; ρ = −0.4633

With so much preprocessing to get the data into the required format and satisfactorily
attempting to re-establish relations between the modifications and gene expression levels in
CD4+ T cells, we move on to discuss our model, methodology adopted and results in the next
chapter.
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Chapter 3

Part I – Model, methodology and
results

By our first goal, we intend to build a model that on the basis of the histone modifications’
data can predict for us the expression level of a gene in CD4+ T cells. More technically, we
want this system to act as a classifier that is capable of predicting the gene expression levels
in the concerned cells based only on these histone modifications as features. Details of this
classification model are discussed ahead.

3.1 Classification Model

Intuitively, in brief, classification is the problem of identifying the class or the category of a
new observation from an already known set of classes on the basis of data/observations that
the classifier is trained on. This ‘training’ data is a collection of observations whose class
memberships are known in advance. For observations of a particular class, the classifier tries
to note the values their characteristic features take or the pattern they follow, if any, and
accordingly it later attempts to classify any new observations it comes across. This is very
typically known as learning from data. A more mathematical explanation of classification is
deferred to a later point in this thesis.

For our work, from the histone modifications’ data discussed, we have exactly 21 histone
methylations’ information as our features of each observation input to the classifier. The cor-
responding gene expression level is the response variable for each input. But what we have
overlooked about the gene expressions until now is that the gene expression levels are basically
intensity values represented by their logarithms taken to base 2. In fact these intensities are
the number of mRNA molecules that are produced from each gene whose logarithms are then
computed. Hence these are inherently ‘continuous’ values. With an aim to predict the expres-
sion level we have only talked about classes, which are always to be discrete. The next section
describes in short how we obtained discrete classes from the continuous response variable.

3.2 Methodology

We collected about 26,000 instances, each with 21 features, and their corresponding expression
levels. These features were the 21 methylations’ counts falling in the promoter regions. The
gene expression levels of these instances ranged approximately from 2.0 to just over 14.0 on
the logarithmic scale. You may recollect from Figure 2.2 earlier that the negative correlation
between a methylation and active genes was clearly visible. So we simply decided upon 2 optimal
threshold values, one that marks the instances where the genes are active or highly expressed

23
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and the other marking repressed or inactive genes. The Figure 3.1 depicts this via a frequency
histogram of gene expression levels of all the 26,000 instances. It is worth to note here that a
repressed gene does not necessarily mean an inactive gene.

Figure 3.1: Frequency histogram showing distribution of gene expression levels in CD4+ T cells

One heuristic to decide the lower threshold as 3.0 and upper threshold as 8.0 is that we also
looked to have just enough number of instances for the classifier to learn the classes well. We
thus formed a binary classification model – class label ‘+1’ if the expression level is beyond 8.0
and class label ‘−1’ if under 2.0.

3.3 Results

Here we discuss and analyze the model performance and what measures were taken in terms of
tuning the model parameters to maximize its performance.

Since we have built a binary classification model here, what we mean by maximizing the
model performance is that we would like the model to learn the intricacies of the problem at
hand and be able to accurately discriminate between the two classes. Ideally, the classifier
could correctly predict the class labels for each and every new observation it makes, giving an
accuracy of 100%. We employed a support vector classifier, also called a support vector machine
(SVM) [Hastie et al., 2009, Boser et al., 1992]. The details of the support vector classifier with
the parameter values we used are given next.

3.3.1 Support Vector Classification

We used ‘LIBSVM - A Library for Support Vector Machines’ created by Chih-Chung Chang
and Chih-Jen Lin [Chang and Lin, 2011] for implementing our classification model. A simple
support vector classifier is a binary linear classifier which can perform a non-linear classification
with what is popularly known as the kernel trick [Boser et al., 1992]. We worked with linear
and polynomial kernels to start with. Though the dimension of our feature space was only 21,
which isn’t so high considering the typical dimensionality issues SVM is capable of handling
otherwise, we still had a large number of example instances to train SVM on, about 26, 000
instances. This made it difficult for SVM employing linear and polynomial kernel to converge
to optimal maximum margin hyperplanes within 100,000 iterations. We thus opted to work
with a radial basis kernel. More on the kernel trick in appendix.

Thus, the tuned set of values for all parameters for the classifier are given below:
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Parameter Values

Cost 10
Gamma for radial basis kernel 1 x 10−5

Folds for cross-validation 10

Table 3.1: Tuned parameter values for SVM

3.3.2 Receiver Operating Characteristics Curve

Simply put, this curve measures the operating characteristics of a signal receiver. In other
words it tells us the receiver’s capability to accurately distinguish signal from noise. Receiver
Operating Characteristics of a classifier shows its performance as a trade off between selectivity
and sensitivity. It is a plot of ‘true positives’ vs. the ‘true negatives’. In place of ‘true negatives’,
one could also use ‘false positives’ which are essentially {1 - ‘true negatives’}. This is plotted
on a scale of 0-1 for both the axes. This curve always goes through (0,0) and (1,1).

A classifier’s performance can be evaluated by knowing its confusion matrix (appendix). We
use that matrix to plot a ROC curve for a classifier and the area under the curve (AUC) of this
plot pictorially tells us the classifier’s accuracy – the discriminative power of the classifier. The
ROC curve of an ideal classifier (100% accuracy) has an AUC of 1, with 0.0 ‘false positives’
and 1.0 ‘true positives’ (all new observations correctly classified). On the contrary, the ROC
curve of what we call a ‘random guess classifier’, when the classifier is completely confused and
cannot at all distinguish between the two classes, has an AUC of 0.5, the ‘x = y’ line in the
plot.

Figure 3.2 is such a ROC curve of binary classification with only the 21 histone modifications
predicting gene expression levels. In this and all the following ROC curves we have also denoted
the responses for (a) an ideal classifier in blue and (b) the random guess classifier in turquoise
blue.

Figure 3.2: ROC curve of binary classification with only histone modifications predicting gene expression

levels

We used a window size of 3000 bp, relative to the TSS, as the promoter region, 2000 bp
upstream and 1000 bp downstream. But this window size can really be anything, because we
only know that the promoter region for a gene is a few base pairs long and lies in vicinity to that
gene. Hence, we varied this window size with combinations of different upstream downstream
sizes relative to the TSS. The bar-plot in Figure 3.3 depicts the AUCs of the ROC curves
obtained with these different combinations of upstream downstream window sizes – upstream
abbreviated as U and downstream as D.

We observe that our classification model features have demonstrated a high discriminative
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Figure 3.3: Barplot of the AUCs for combinations of upstream/downstream window sizes

ability with all the various window sizes. But why, we thought, should this be the case? Is our
model so convincingly capable of discriminating the classes? To satisfy ourselves of our classifier,
that it itself isn’t doing something outright wrong insulated from the domain perspective, we
attempted to confuse our classifier. For all the training instances fed to the classifier, we
permuted their class labels with uniform randomness. So the feature set for the training data
now may or may not exhibit the earlier structure/pattern since all instances with the same true
class label have now got randomly dispersed in either of the classes. In such a scenario we expect
the classifier to thus behave as a ‘random guess classifier’. Our ROC curve for this training
data with randomized class labels is Figure 3.4. We have retained the upstream/downstream
window sizes to 2000 and 1000 bp respectively.

Figure 3.4: ROC curve with randomized class labels

As the curve depicts, our classifier does get confused with the AUC falling to 0.4912. This
corroborates our methodology. What remains to be checked is whether we can garner a similar
support for these accuracies from the domain perspective.

We performed similar classification procedures in 2 more, different ways. Since we had col-
lected these feature values from the promoter regions of the genes to predict the gene expression
levels, as a first we moved out of the promoter region of these genes and performed the same
procedure of collecting the modifications’ values in 3000 bp long windows. More specifically,
we moved away from the TSS by 100,000 bp and considered similar windows there to predict
the expression levels of genes lying hereof. The ROC curve for these specifications are given in
Figure 3.5. The AUC has reduced comparatively; AUC = 0.7622 << 0.9727.
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Figure 3.5: ROC curve after moving away by 100,000 bp from the promoter region

As a second, we attempted to play with the way we have generated the two classes from
our response variable. The earlier lower threshold was changed from 2.0 to a range of 4.0− 5.0.
Thus, effectively, we diminished the distance between the two classes expecting to have made it
at least little more difficult for the classifier to discriminate between the two class members now
than the initial setting. The distance here being their separation on the x-axis, denoting the
expression levels. Figure 3.6 and 3.7 show the change in class boundaries and the corresponding
ROC curves respectively.

Figure 3.6: Distribution of gene expression levels in CD4+ T cells with a varied class boundary I

We moved the classes more closer to each other changing the lower class boundaries to
5.0−6.0. Each time we made sure that the classifier also has enough examples to train on. The
AUC now reduced to 0.8154 (Figure 3.8 and 3.9).

Thus we satisfied ourselves on both methodology and domain fronts. The histone modi-
fications do seem to have a considerably high discriminative capability in terms of predicting
whether the gene is highly expressed or not.

3.4 Goals revisited

Of our goals:

1. to predict expression level of a gene by histone modifications at its promoters; and
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Figure 3.7: ROC curve for varied class boundary I

Figure 3.8: Distribution of gene expression levels in CD4+ T cells with varied class boundary II

Figure 3.9: ROC curve for varied class boundary II

2. to characterize tissue specificity of promoters using these histone modifications,

the tissue specificity of promoters is still to be dealt with. The next chapter deals with this
and explains what prompted us to believe in histone modifications, the epigenetic factors, to
characterize such tissue specificity.



Chapter 4

Part II – Model and methodology

In part I, we looked at histone modifications in CD4+ T cells located at the promoters and the
corresponding results were discussed. These epigenetic factors did seem to have a considerable
discriminative ability in predicting the gene expression levels in T cells. In part II, with confi-
dence from part I results, we used the same features of 21 histone methylations and replaced
the gene expression levels in T cells by the expressions from heart tissue. In the sections that
follow, we discuss the source of these tissue specific promoter regions, initial results with heart
tissue which then proved to be our motivation and premise for the part II.

4.1 Preliminary results for part II

Schug et al. in 2005 [Schug et al., 2005] performed a genome-wide analysis of promoters in the
context of gene expression patterns with tissue specificity. They studied 25 tissues in humans
and mouse. We have used the heart tissue data with few other human tissues listed in Table 4.1.

Adrenaline gland Amygdala Cerebellum Cortex
Kidney Liver Lung Ovary
Pancreas Pituitary gland Placenta Prostate
Salivary gland Spinal cord Spleen Testis
Thalamus Thymus Thyriod Trachea
Uterus Caudate nucleus Corpus callosum Drg

Table 4.1: 25 tissues in humans studied by Schug et al.

We arbitrarily selected heart tissue and replaced our earlier model’s response variable by
the expression levels of genes in heart tissue but retained the same feature values which were
collected at the promoter regions of genes in CD4+ T cells. The remaining model with all the
tuned parameter values was completely retained and used as it is. The ROC curve for this
initial setting is given in Figure 4.1.

Schug et al. have measured two kinds of tissues specificity ’overall’ tissue specificity and
’categorical’ tissue specificity. Overall tissue specificity ranks a gene according to the degree to
which its expression pattern differs from ubiquitous uniform expression and categorical tissue
specificity places special emphasis on a particular tissue of interest and ranks a gene according
to the degree to which its expression pattern is skewed toward expression in only that particular
tissue. This categorical tissue specificity is denoted by Q. It is near its minimum of zero when a
gene is relatively highly expressed in a small number of tissues including the tissue of interest,
and becomes higher as either the number of tissues expressing the gene become higher, or as
the relative contribution of the tissue to the gene’s overall pattern becomes smaller. We thus
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Figure 4.1: ROC curve with heart data (*AUC = Area Under the Curve)

have used this Q value as our response variable with a certain threshold deciding whether the
Q value is low enough and the corresponding class label is ‘more tissue specific’ and vice versa.
The feature values too now came from promoter regions of the genes in heart tissue. The ROC
curve with this new response variable for our model is plotted in Figure 4.2.

Figure 4.2: ROC curve using Q of heart data

We observe that when classes made out of the gene expression levels in heart tissue were used
in our model, the classifier performed well to achieve an accuracy of 0.7651 in spite of having the
modifications’ values pertaining to promoter regions of genes in CD4+ T cells. On the contrary,
when we used the Q values from Schug et al. denoting tissue specificity, the performance went
down but the classifier did not loose its discriminative ability completely, having an AUC of
0.66. The histone modifications have served well as features to under-estimate them so easily.
Hence, we decided to supplement these histone modifications with another set of features in
characterizing the tissue specificity of promoters.

4.2 Additional set of features

We performed a Markov analysis of the genomic sequence data composed of adenine (A), cytosine
(C), guanine (G), and thymine (T. We collected this sequence information located at the genes
for each tissue provided by Schug et al. (25 tissues in all). We selected a gene on the basis of
the Q value assigned to it. The ones with a low Q value were selected. 3000 bp long sequences
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relative to each TSS were considered in any tissue. 5500 such sequences were collected in this
manner.

The sequences were modeled as Markov chains of orders 1 to 9. We observed that modeling
a promoter sequence as a Markov chain of order 4 facilitates good predictions of whether a given
sequence drives the expression of a gene specific to a given tissue. Thus using a Markov chain
of order 4, we computed the log-probabilities that a sequence belongs to each tissue. Since we
dealt with 25 tissues, every sequence from the collection of 5500 sequences had corresponding
25 log-probabilities. These 25 log-probabilities are used as an additional set of features along
with the 21 histone modifications’ data for the same region as the sequences. Thus in our
classification model for part II:

#features = 21 + 25
(histone modifications) (tissue specific log-likelihoods)

#Class labels = 25
(tissues)

Since we have moved on to identify tissue specific signals in promoters in part II, our class
labels are now no longer binary as in part I. Every sequence in the training data will now have
the particular tissue that it belongs to as its class label. Thus we have 25 classes and the
problem is now a multi-class classification problem.

We expect that our classifier with these additional features, from Markov analysis of genomic
sequences, supplemented to the epigenetic factors could perform comparatively better than the
epigenetic factors alone as features. Overall, the combination of both of these feature sets could
posses a benefit of higher characterizability of tissue specific signals in promoters.

We convey some concluding remarks and future work in the next chapter.
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Chapter 5

Conclusions and Future work

In this chapter we summarize our work. We further analyze some results produced earlier and
reason about why certain things worked the way they did. We also discuss some future research
directions.

We demonstrated that the epigenetic factors, more specifically the histone methylations are
capable of discriminating between genes that are highly expressed and otherwise, or in other
words the histone modifications can be successfully deployed to predict the expression levels of
genes in CD4+ T cells, which can be extended to others. This will certainly work at least when
the classes are far away from each other that the classifier can easily distinguish between them.

We worked with a radial-basis kernel function in order to transform the feature space. For
the linear and polynomial kernels the max-iterations of 100,000 weren’t enough for the optimizers
to converge to a set of optimal hyperplane equations for the support vector classifier. Hence,
we wouldn’t claim that the linear and polynomial kernels are ‘incapable’ of finding the optimal
hyperplane equations, but are computationally intensive. The dimension of our feature space
is not very high, it is 21 which is very much workable without any hassles for the optimizers.
On the contrary, what happened to be more important for this problem than its feature space
dimension is the number of training examples. Having a large number of those can make the
problem computationally intensive.

We also saw that when we replaced the gene expression levels in CD4+ T cells by those in
heart tissue but kept the corresponding histone modification values from the promoter regions
of genes in CD4+ T cells as features, the classifier still managed an accuracy of 0̃.76. We believe
the reason that this was so is that T cells are immune cells, they assist other white blood cells
in immunologic processes. Since every part of our body, even the tissues would require some
immune cells amongst them to protect from or fight infections and their causes, the genes in
CD4+ T cells may be expressed to some extent is all these tissues. And hence that accuracy.

Also, when we moved 100,000 base pairs away from the promoter region, we expected a
further dip in accuracy than we actually observed. Probably, one reason why expected dip did
not really happen could be because our DNA usually has long modules (parts of the DNA) in
which the adjacent modules may be insulated from each other but the way the DNA folds itself
there still could be chances of interaction between 2 very distant regions which can’t be ruled
out completely.

So this convinces us that the histone modifications can exhibit a good characterizability when
it comes to predicting gene expression levels. But this discriminative quality of theirs declined to
some extent when we attempted to extract tissue specific signals in promoters. The experiment
that we performed with heart could be re-performed with some other tissues like the skin tissues,
lung tissues or the cerebellum tissue. There may be some pattern that the histone modifications
may work well for selected tissues like skin and lung but not for cerebellum. Thinking more of
it, these are epigenetic factors which may be governed by external/environment factors that do
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not govern all the tissues in a similar fashion.
More over, we know that the genomic sequences composed of adenine (A), cytosine (C),

guanine (G), and thymine (T are the most basic entities participating in every gene expression
or regulation taking place in the body. Hence we wouldn’t be completely wrong in believing that
even when the histone modifications saw some drop their discriminative power, the inclusion
of additional set of features from the Markov analysis of the genomic sequences can boost
the classifier’s ability again. And thus came our classification model of part II, from binary
classification to multi-class classification to deal with 25 target tissues.

In closing, there are some possible future directions. We could perform renewed Markov
analysis by varying the upstream/downstream window sizes and effectively vary the sequence
lengths. Also, depending upon the kind of problem at hand, we could let the model completely
switch from histone modifications as features to the sequence analysis information as features or
just have a complete set of features with weighted selection. Currently, we only have genome-
wide information for histone methylations available. May be with advances in technologies all
the other modifications like the genome-wide acetylations, phosphorylations etc. might become
available and including them could throw up some more intriguing results.
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Appendix A

Molecular Biology Excerpts

A.0.1 Structure of a nucleosome

Figure A.1: Nucleosome structure.

(Molecular Biology of the Cell. 4th edi-

tion. ID: NBK26887, NCBI Bookshelf)

Figure alongside depicts the structure of a nucleo-
some. It contains a protein core made of eight histone
molecules. The nucleosome core particle is released
from chromatin by digestion of the linker DNA with
a nuclease, an enzyme that breaks down DNA.

After dissociation of the isolated nucleosome into its
protein core and DNA, the length of the DNA that was
wound around the core can be determined. It is pre-
cisely 146 base pairs long. This length of 146 nucleotide
pairs is sufficient to wrap 1.65 times around the histone
core.

A.0.2 Promoters

Promoters

• are a special sequence of nucleotides proximal to
the starting point for RNA synthesis, in other
words, a transcriptional start site of a gene.

• typically lie within few base-pairs upstream and
downstream of the gene they regulate.

Figure A.2: Pictorial depiction of a section of DNA showing a gene and the corresponding promoter

region
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Appendix B

Acronyms

DNA Deoxyribo Nucleic Acid
RNA Ribo Nucleic Acid
mRNA messenger RNA
TSS Transcription Start Site
bp base pairs
DRG Dorsal Root Ganglia (tissue)
ROC Receiver Operating Characteristics
AUC Area Under the Curve
SVM Support Vector Machines
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