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2, 6, 12, and 20 electron quantum dots have been studied using coupled cluster at singles and
doubles level and extensive multireference coupled cluster �MRCC� method. A Fock-space version
of MRCC �FSMRCC� containing single hole-particle excited determinants has been used to
calculate low-lying excited states of the above system. The ionization potential and electron affinity
are also calculated. The effect of correlation energy on excitation energy and charge density is
shown by calculating them at the high density region �low value of density parameter rs� and at the
low density region �high value of density parameter rs�. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2768523�

I. INTRODUCTION

Quantum dots are zero dimensional electron systems
which are also called artificial atoms because of the many
similarities they have with the real atoms, such as discrete
electronic spectra and degenerate energy levels.1–3 The quan-
tum dots are a manifestation of confined electron systems.
The number of electrons and the size of such a confined
electron gas are highly tunable; hence, they can be used to
investigate the various properties of interacting many-body
systems. A diverse variety of applications ranging from
single electron transistor, lasers, diodes to quantum comput-
ing have made quantum dots an interesting object for exten-
sive theoretical3,5 and experimental investigations,1,2 since
their early realization in the early 1980s.4 In recent years, the
electronic structure of quantum dots has been studied by a
variety of techniques. The majority of the work reported is
with parabolic confining potential.3 There have been several
well established studies on quantum dots using spin density
functional theory �SDFT�.3,6,7 The Hartree-Fock8,9 �HF� and
exact diagonalization10–12 �ED� methods have also been used
to study quantum dots. It is known that the SDFT suffers
from broken symmetry problem while HF fails to describe
electron correlation. Although ED is able to treat the corre-
lations exactly, it is limited to a few electron systems �four to
six electrons�.

There are also many traditional methods to study excited
states including ED,13,14 time dependent density functional
�TDDFT� theory15–18 and time dependent Hartree-Fock
�TDHF� theory.19,20 However, ED is limited to the study of
very few frequencies. The TDDFT suffers from an unknown
frequency dependence and TDHF on the other hand does not
contain correlation effects which are important for the de-
scription of excited states, in particular.

Therefore, it is necessary to establish a theoretical
method which provides an accurate treatment of the correla-

tion energy for the ground states as well as the excited states
and remains computationally tractable for even large sys-
tems. There are a number of reasons to recommend the
coupled cluster singles and doubles �CCSD� model.21 One of
the most important reasons is that the method is size exten-
sive, which means that it scales properly with the size of the
dot �the number of electrons�. The singles and doubles model
is also efficient since the treatment of the electron correlation
effect grows no more rapidly than the sixth power of the
number of basis functions and the method is accurate
enough. CCSD is also applicable to most of the problems
without modification or special symmetry conditions.

The correlation energies of ground states for two and six
electron quantum dots have been reported previously using
CCSD at different confining strengths �.22 The excited state
quantum dots have also been studied using a highly corre-
lated equation of motion coupled cluster �EOMCC� method23

for two electron systems while varying the confinement fre-
quency �.24

In the present work, the electronic structure of the
ground and excited states of two-dimensional quantum dots
containing 2, 6, and 12 electrons have been computed using
CCSD and completely size-extensive multireference coupled
cluster �MRCC� method, respectively. MRCC has been
found to be a more compact method to describe both the
dynamic and nondynamic electron correlations of excited
states and better suited than EOMCC for having the property
of complete size extensivity.25–29 In the effective Hamil-
tonian version of the method,26 the exact energies of the
states are obtained by diagonalization of a suitably defined
effective Hamiltonian within a prechosen model space of im-
portant configurations. There are two primary versions of the
effective Hamiltonian MRCC, one state-universal type and
the other valence-universal or Fock-space type. The latter,
based on the concept of a common vacuum, is suitable for

THE JOURNAL OF CHEMICAL PHYSICS 127, 114708 �2007�

0021-9606/2007/127�11�/114708/6/$23.00 © 2007 American Institute of Physics127, 114708-1

Downloaded 30 Jun 2013 to 129.93.227.65. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2768523
http://dx.doi.org/10.1063/1.2768523
http://dx.doi.org/10.1063/1.2768523


excitation energy, ionization potential, and electron affinity.29

It is possible to make accurate predictions about the spin
densities of the above state properties using the MRCC
method.30

The paper is organized as follows: In the next section,
we present a brief description of the FSMRCC method,
which is already covered in literature extensively. In Sec. III,
details of the external potential of quantum dots and the
computational methods of using FSMRCC to quantum dots
is presented. Section IV presents results and discussions.

II. THEORY

While most of the attention has been focused on the
difference energies, there has been recent interest in applying
coupled cluster �CC� methods to the case of static electronic
properties. Broadly the CC method can be classified into two
categories, one based on a single-determinant reference func-
tion, usually a Hartree-Fock function,21 and the other based
on a multiconfiguration model space.29

Single reference CC models have been shown to be
highly successful for nondegenerate systems. It effectively
includes the “dynamical” correlation that keeps the electrons
apart. However, for cases where “nondynamical” correlation
is important, i.e., when several configurations might be ex-
pected to make equally important contributions to the exact
wave function, the model space should include several con-
figurations to introduce such quasidegenerate effects.

We choose the numerical Hartree-Fock solution for the
closed-shell N-electron ground state �HF as the vacuum with
respect to which holes and particles are defined. The differ-
ent configurations included in the model space in the FSM-
RCC include holes and particles, which are called active or-
bitals. The number of active holes and particles defines the
rank of the Fock-space for the problem. In general, for a
problem for which the model space consists of k active par-
ticles and l active hole, the cluster operators must be able to
destroy any subset of k active particles and k active holes. In
our problem in which the model space consists of one active
particle and one active hole, the normal ordered wave opera-
tor is defined by

� = �eS�k�
� , �1�

where

S̃k,l = �
n1=0

k

�
n2=0

l

S�n1,n2� �2�

or

S̃�1,1� = S�0,0� + S�0,1� + S�1,0� + S�1,1�, �3�

where S�n1,n2� describes exactly n1 number of active holes and
n2 number of active particles. The brackets �� denote the
normal ordering of the operators within the parentheses.

To calculate the energies for the open-shell states like
�N−1� electron states, �N+1� electron states, or the excited
N-electron states, we substitute the form of the wave func-
tion in the Schrödinger equation:

H��i
�k,l�	 = Ei��i

�k,l�	 . �4�

We can postulate the existence of a valence-universal wave
operator � that satisfies a Fock-space Bloch equation of the
form

H�P�k,l� = �HeffP
�k,l�; 0 � k � l, 0 � l � 1, �5�

where P�k,l� is the projection operator onto the model space
defined by the linear combination of determinants having k
active particles and l active holes. This equation is solved
using the subsystem embedding condition developed by
Mukherjee and co-workers27,31 and thus the description of
lower Fock-space sectors is obtained as by-product. The
equation is projected to P and Q spaces of the relevant Fock-
space sectors.

The Bloch equation defines the wave operator and the
effective Hamiltonian. The cluster operator following Eq. �1�
must contain all excitations capable of inducing transitions
form all the model space ��k,l� �with k and l between 0 and 1�
to the corresponding virtual space.

For complete space, the valence universality is compat-
ible with the Bloch intermediate normalization given by

P�k,l��P�k,l� = P�k,l�. �6�

However, for a general case, use of incomplete model space
is quite essential and for such general cases the use of Bloch
intermediate normalization is incompatible with a valence
universal � as was first shown by Mukherjee.32 Hence the
P-space projection equation gets modified. A special case of
incomplete model space is a space of one active particle and
one active hole, which will be used in the present paper for
the calculation of excited energies. Such a model space is
called quasicomplete model space. For such quasicomplete
model space, it has been shown that the intermediate normal-
ization can still be used by keeping the connected form of
equations.29,33 Hence, although this is formally an incom-
plete space, the equations form the simple structure of a
complete model space.

It has been shown that for excitation energies using �1,1�
model space, the amplitude of S1

�1,1� operator, which takes the
model space to �HF, does not contribute. For computational
simplifications, initially

H̄ → �HeS�0,0�
�C �7�

is formed. H̄ is contracted to S�0,1�, S�1,0�, S�1,1�, etc., to form
the connected parts of Eq. �5�.

III. COMPUTATIONAL DETAILS

The model Hamiltonian for a quantum dot with para-
bolic confining potential is given by

H�m*,�,�� =
− 1

2m* � �i
2 +

1

2
m*�2 � ri

2 + �
i�j

1

�rij
. �8�

m* and � are scaled from the problem by choosing them as
m*=�=1. Hence we have
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E�m*,�,�� =
m*

�2 E�1,1,��� , �9�

where

�� =
�2

m*� . �10�

Typical material constants for GaAs are m*=0.067 and �
=12.4. The units of length and energy are scaled to effective
atomic units. Effective Bohr radius aB

* =9.8 nm and effective
Hartree Ha

*=2Ry
*=12 meV.

The confinement potential ��� and density parameter �rs�
are related to the number of electrons in the dot.34 rs corre-
sponds to the average particle density in the dot. For the
external parabolic confinement, we have

�2 =
1

rs
3
N

. �11�

This clearly shows how rs and � are related. It means that
increasing the value of rs results in shifting towards the low
density region which is highly correlated and vice versa.
When the electron density is low, the Coulombic energy in-
creases with respect to kinetic energy and consequently the
correlation effect is strongly dominant. We have solved the
problem in three steps. We first obtain the HF solution by
using real-space grid technique. This technique initiates the
self-consistency with one of the several guesses of charge
density in search of energy minima, which assures the detec-
tion of the actual energy of the ground state of the system.
We have applied a grid size of 60�60 for 2-electron dots,
120�120 for 6-electron dots, 160�160 for 12-electron dots,
and 200�200 for 20-electron dots. In the second step we
calculate the CCSD energy which is different from HF en-
ergy by the amount of correlation energy. Finally Fock-space
MRCC calculates the excitation energies, ionization poten-
tial, and electron affinities. The �0,0� sector is associated with
the ground state, the �0,1� sector with singly ionized states,
the �1,0� sector with electron attached states, and the �1,1�
sector with singly excited states. For 2-electron dot, one ac-
tive hole and five active particles generate the model space

and for 6-electron dot, three active holes and seven active
particles have been chosen to establish the model space. For
12-electron dot, three active holes and four active particles
are chosen as the model space.

It is possible to treat confined electrons over wide ranges
of frequencies by changing the value of �. With GaAs ma-
terial constants, frequencies of interest scale into a range
more typical of atomic and molecular systems where tradi-
tional quantum chemical techniques can be applied. Here, in
each case, we vary values of � from 0.2 to 1 effective Har-
tree and calculate the corresponding ground state and excita-
tion energies �EE�, ionization potential �IP�, and electron
affinity �EA�.

IV. RESULTS AND DISCUSSIONS

For the sake of completeness we show the single particle
eigenvalue spectrum for the noninteracting case in Fig. 1.
Clearly the electron counts of 2, 6, 12, and 20 are magic
numbers as the corresponding systems are closed-shell ones.
Because the electrons are confined by a harmonic potential
rather than a Coulombic potential, the angular momentum
for a principal quantum number n runs from n to 0, decreas-
ing by steps of 2 instead of 1. On the other hand, there are
only two functions of a given angular momentum and prin-
cipal quantum numbers n and � �the radial and angular mo-
mentum quantum numbers�.

We have studied the electronic structure of closed-shell
quantum dots using CCSD and MRCC methods for N=2, 6,
and 12. We have studied the correlation energy, excitation
energy, ionization potential, and electron affinity in different
density regions by varying the value in each of the 2, 6, and
12 electron quantum dots.

In Table I we show the total energies obtained by HF and

TABLE I. The HF and CCSD energies for a N=2 electron dot at different
values of �=0.2, 0.4, 0.6, 0.8, and 1. Energies are measured in effective
Hartree atomic units.

�
HF

energy
CCSD
energy

CCSD energy
�Henderson et al.�

0.2 0.882 0.731 ¯

0.4 1.508 1.366 1.377
0.6 2.082 1.932 1.939
0.8 2.631 2.475 2.479
1.0 3.161 3.001 3.003

TABLE II. The HF, CCSD, and correlation energies for N=2, 6, 12, and 20
electron quantum dots at �=1. Energies are measured in effective Hartree
atomic units.

N
HF

energy
CCSD
energy Correlation energy

2 3.162 3.001 0.160
6 20.719 20.229 0.489

12 66.914 65.982 0.932
20 109.081 107.670 1.411

FIG. 1. The closed-shell HF orbital energy diagram.
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CCSD methods along with the earlier results of Henderson et
al. for �=1. An excellent agreement with their results may
be noted.

In Table II, we show ground state energies for N=2, 6,
12, and 20 electron dots calculated using HF and CCSD
methods at �=1. The correlation energies are also calculated
for each of the cases.

Figure 2 shows the effect of varying the value of � on
the correlation energies for N=2, 6, and 12 electron dots.
The correlation energy is plotted as a fraction of total energy.
Recalling that � and rs are inversely proportional, it must be
noted that when rs increases, the Coulombic energy in-
creases, which results in increase of the correlation energy.
Typically, it can be seen that for a two-electron dot the cor-
relation energy is of the order of 18% of the total energy at
�=0.2 �rs=2.6�. We can also see that at lower confining
potential, the correlation energy becomes more important.

The effect of density �rs� on the energy levels can be
seen in Fig. 3, where we have shown the eigenspectrum for
two values of rs �N=6, rs=6.0 and rs=0.75�. It is clear that at
high density, the energy levels are well separated. It shows
the consistency of ionization potential, excitation energy, and
electron affinity with varying the rs. The rs=4 system repre-
sents the lower density region and expectedly less separated
energy levels.

We recall the definitions

IP = E�N−1� − EN,

EA = EN − E�N+1�.

Figure 4 shows the ionization potentials �IPs� of 2, 6,
and 12 electron systems. As expected, the difference between
the energy levels and the IPs increases with the number of
electrons for a fixed value of �. It must also be noted that in
highly correlated systems, change of the number of electrons
does not affect the IPs, while in weakly correlated systems
we see the reverse result.

Singlet excitations are also studied and the excitation
energies are calculated for N=2 and 6 by varying the value
of rs. Figure 5 shows the first singlet excitations for two and
six electron dots. Excitations are 1s→2p, 1s→3d, and 1s
→3s for a two electron dot and 2p→3d, 2p→3s, and 2p
→4f for a six electron dot. The excitation energies for dif-
ferent size quantum dots have been calculated by the
EOMCC method previously.24 However, these have been
done using Gaussian basis sets of varying size. For indicative
comparison, we reproduce in Table III the lowest three
EOMCC singlet excitations for two-electron quantum dots
using 60 Gaussian basis containing s, p, d and f functions
and the corresponding FSMRCC results for different values
of �. The FSMRCC results presented are in a 60�60 grid.
We find very good agreement of the results.

Turning our attention to the FSMRCC results, we ob-
serve that the rate of change in excitation energy with respect
to rs must also be noted. In both N=2 and N=6 electron dots,
by increasing the rs beyond rs=1.5 and shifting to the high
density region, the excitation energies are not affected much.
Recall the eigenvalue spectra and the increase in energy level
separations by decreasing the value of rs. As expected, it is
observed that the excitation energy decreases by increasing
the value of rs. On the other hand, in the weakly correlated

FIG. 3. Parabolic eigenvalue spectrum for N=6 dot at �a� rs=4 and �b� rs

=0.75. Energy is calculated in Hartree atomic units.
FIG. 2. Correlation energy as a fraction of total energy for N=2 and 6
electron quantum dots. Correlation energies are measured in effective Har-
tree atomic units.

TABLE III. First three singlet excitation energies obtained by FSMRCC �60�60� grid �basis� and EOMCC
�60 basis funtions� as in Ref. 24. All energies are in Hartree atomic units.

�

1s→2p 1s→3d 1s→3s

FSMRCC EOMCC FSMRCC EOMCC FSMRCC EOMCC

0.4 0.402 0.402 0.464 0.507 0.737 0.731
0.6 0.627 0.603 0.759 0.815 1.102 1.102
0.8 0.798 0.803 1.007 1.131 1.443 1.475
1.0 0.998 1.004 1.298 1.456 1.801 1.850
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region �high values of rs�, the excitation energy is not sensi-
tive to the number of electrons. Indeed in this region the
mean field description is valid. Figures 6�a� and 6�b� show
the charge density of a six electron system at two values of
rs=1 and rs=4. The densities are calculated using the HF and
CC methods. CC charge density includes correlation effect
and it can be seen that the charge density is lower in height
due to the distribution of charge in virtual space. As ex-
pected, it is seen that density decreases dramatically by in-
creasing rs. This effect can be seen more clearly in Fig. 6�c�
where charge density is plotted for a six electron dot by
varying the value of rs from rs�0.7 to rs�4.

V. CONCLUSION

We have investigated the electronic structure of paraboli-
cally confined quantum dots with 2, 6, 12, and 20 electrons.
We use the explicitly well established CCSD and MRCC
methods. We calculated the ground state, correlation energy,
ionization potential, and electron affinity as well as excita-
tion energy. Excitation energies are compared with indicative
EOMCC results and the agreement is quite good. Our study
shows the potential of extensive and highly correlated CCSD
and MRCCSD methods in treating a large number of elec-
trons for two-dimensional interacting confined systems.
Study of satellite structures in the electron detachment and

FIG. 4. The IP energies for N=2, 6, and 12 electron quantum dots at dif-
ferent values of �. Energies are measured in effective Hartree atomic units.

FIG. 5. The first three excitation energies for �a� N=6 and �b� N=2 electron
quantum dots at different values of rs. Energies are measured in effective
Hartree atomic units.

FIG. 6. HF and CC charge densities are plotted along the diameter of a six
electron quantum dot at �a� rs=1 and �b� rs=4. �c� shows the CC charge
density at rs=0.7, rs=1, and rs=4 for a N=6 electron quantum dot.

114708-5 Electronic structure of quantum dots using coupled cluster method J. Chem. Phys. 127, 114708 �2007�

Downloaded 30 Jun 2013 to 129.93.227.65. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



excitation spectrum would be of great future interest in terms
of comparison of FSMRCC with EOMCC, where higher ex-
citations �i.e., two hole–one particle space for IP and two
hole–two particle space for EE� have to be treated almost on
the same footing. However, our present study for main IPs
and EEs show good correlation of the FSMRCC and
EOMCC results.
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