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Scaling and universality in transition to synchronous chaos with local-global interactions
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We study the coupled-map lattice model with both local and global couplings. We find necessary conditions
for observing synchronous chaos and investigate the transition to synchronization as a dynamic phase transi-
tion. We discover that this transition, if continuous, shows scaling and universal behavior with the dynamic
exponent z=2. We also define and illustrate an interesting quantity similar to persistence at critical point.
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I. INTRODUCTION

Universality and scaling in critical many-body systems
[1,2] can be considered to be one of the important scientific
discoveries in statistical physics. This critical behavior is of-
ten able to distinguish between essential and not so essential
details of the system. For example, the phase transitions in
the Ising model and the percolation model have been inves-
tigated on various two-dimensional lattices (square, honey-
comb, triangular, and random) and the same sets of critical
exponents and finite-size scaling functions have been found
for the Ising and percolation models [2], respectively. These
ideas have been used in dynamical systems theory also. For
example, it was established that all one-hump quadratic maps
which undergo a period-doubling cascade have the same set
of critical exponents [3]. Thus seemingly disparate models
could have the same underlying dynamics. We can ask simi-
lar questions about nonequilibrium systems such as spatially
extended dynamical systems and the stochastic models. In
this work, we will try to see if one can draw parallels be-
tween phase transitions in these systems. In particular, we
will be interested in similarity between the transition to di-
rected percolation (DP) in stochastic systems [4] and the syn-
chronization transition in spatially extended dynamical sys-
tems [5].

Here we will investigate a popular model of spatiotempo-
ral dynamical systems, the coupled map lattice (CML),
which was proposed by Kaneko simultaneously with Waller
and Kapral in the 1980s [6,7]. It was then studied extensively
by Kaneko and several others [7], and is now a prototype for
a spatially extended dynamical system. It has been studied
on various types of lattices. It has found applications in mod-
eling problems as diverse as spiral formation to the stock
market [8,9]. The criterion for transition to synchronization
in CML in the thermodynamic limit is now well understood
and is related to the presence of a gap in the eigenvalue
spectrum of the connectivity matrix [5]. (Similar criterion is
also applicable to continuous time systems such as coupled
oscillators [10].) It seems that the system needs to have non-
local (i.e., long-range) interactions, in order to achieve this
gap in an eigenvalue spectrum in the thermodynamic limit.
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Purely local couplings, in any dimension, cannot lead to a
synchronous chaotic state [11,12] for an infinite array. In this
sense, transition to synchronization as dynamic phase transi-
tion is rather unique since in many other systems, the transi-
tion for the mean-field case is in the same universality class
as one observed for dimension d=d,, where d, is a critical
dimension. On the other hand, transition to synchronous
chaos exists only in the presence of long-range interactions
and there can be no meaningful comparison with a finite-
dimensional system.

There are several reasons that phenomenon of synchro-
nous chaos in spatially extended systems has attracted much
attention in the recent decade [5,10,13]. It has practical ap-
plications such as secure communication. Besides, there are
physical grounds that make it necessary to investigate this
problem. Physically, synchronous chaos does appear in sys-
tems such as the visual cortex [14]. We would like to note
that the importance of nonlocal interactions in neurobiology
is well acknowledged [15,16].

Since we are emphasizing the role of long-range interac-
tions, it could be worthwhile to ask how prevalent such in-
teractions are. In fact, there are several physical systems in
which nonlocal or long-range interactions arise naturally. Re-
cently, Tsallis proposed a thermodynamics to deal with these
systems [17]. We should note that even if long-range inter-
actions are not explicitly present in the system, they may be
present in equations of simplified models. Integro-
differential equations arise in various branches of science. As
an example, we can consider a system in which some vari-
ables have faster time scale of evolution compared to others.
In this case, if one writes down equations for slow variables
alone, the fast variables could appear averaged out over en-
tire system, thus giving a global contribution. Oxidation of
CO on a Pt(110) surface is described by integro-differential
equation in which both local and global terms play the role
[18]. Integro-differential equations are also used to describe
flame propagation [19]. Such nonlocal couplings can also be
present in resultant equations when there is external forcing
at length scale higher than the diffusion scale of the system.
In center manifold reduction, such a term may arise and its
contribution may not be negligible [20].

The problem of synchronization in spatially extended sys-
tems could be considered in two different ways. One is syn-
chronization between two different replicas of the system
that are coupled deterministically or stochastically. Another
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possibility is self-synchronization of all the elements of the
same system. However, the synchronous state is an absorb-
ing state in both cases, and thus the transitions in either case
could be compared with the absorbing state phase transitions.
We will be dealing with the transition to self-synchronization
in coupled map lattices. Previous studies have dealt with
stochastic synchronization between two spatially extended
systems [21-23], which do not require the presence of non-
local coupling [23]. There have been previous studies on the
synchronization transition induced by common noise in spa-
tially extended systems. The transition to synchronization of
coupled cellular automata (CA) in the presence of a stochas-
tic coupling mechanism has been investigated [22]. Grass-
berger [24] later showed that this transition in CA is in DP
class. Baroni, Livi, and Torcini studied stochastic synchroni-
zation in CML, and conjectured that the transition to syn-
chronization could be in DP class or Kardar-Parisi-Zhang
class [25] depending on mechanism of information propaga-
tion [23]. Rolf, Bohr, and Jensen [26] studied spatiotemporal
intermittency in specific maps that show spatiotemporal in-
termittency. It was discovered that the transition depends on
whether the lattice is updated synchronously or asynchro-
nously [27]. Tt was claimed that the transition is in DP class
if the updates are asynchronous, while it could be in a dif-
ferent universality class when all sites are updated simulta-
neously. We will be dealing with exact synchronization in a
coupled map lattice with purely deterministic rules without
any stochastic component. Since the term ‘“‘synchronous
chaos” is undefined in the presence of asynchronous updates
(though a synchronous fixed point is possible), we cannot
have a valid comparison in this case. However, to our knowl-
edge, transition to synchronization in CML, in the absence of
noise (which requires the presence of nonlocal interactions)
has not been investigated.

In this paper, we study the transition to synchronous chaos
in the deterministic CML with local-global couplings and
parallel update. We find necessary conditions for synchro-
nous chaos. This helps us to know precisely the critical cou-
pling strength for which synchronous chaos appears. For
continuous transitions, we find that the approach of the sys-
tem towards the synchronous chaotic state shows a universal
behavior. On the other hand, transition to synchronous fixed
point does depend on the nature of the map. We try to define
certain order parameters and find critical exponents. The fact
that we know the critical value of coupling parameter at the
transition point is a big help in finding the exponents since a
lot of computational time is usually spent in finding the criti-
cal point. Finding critical exponents exactly helps us to iden-
tify whether or not different systems are in the same univer-
sality class. We try to see if we can draw some parallel
between stochastic systems and dynamical systems. We can
never be exhaustive in numerical studies. However, for the
cases we investigated, we find that if the transition is con-
tinuous, its critical behavior is similar to that of directed
percolation.

This paper is organized as follows. In Sec. II, we define
the model and state the condition for synchronization. In Sec.
III, we define order parameter(s) for synchronous chaos and
define critical exponents in a manner analogous to directed
percolation. We then present numerical calculated results,
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which show good scaling and universal behaviors with well-
defined critical exponents. In Sec. IV, we consider the case of
purely global coupling. In Sec. V, we briefly note that behav-
ior of synchronous nonchaotic systems is very different. In
Sec. VI, we define a quantity similar to persistence, which
shows interesting scaling at critical point. In Sec. VII, we
state the conclusions.

II. THE MODEL

The CML with local-global couplings on a one-
dimensional lattice of length N with periodic boundary con-
ditions is defined as

MU+U=U—E—YU@ﬁD+§U@mUD+ﬂn4@ﬂ

N
* 2 o). (1)

Here 1 <i=<N, xy,,(t)=x,(¢), and xy,=xy. Parameters for lo-
cal and global couplings are € and v, respectively. When
€=0, the model of Eq. (1) reduces to the globally coupled
model studied by Kaneko [7]. Physically, the global field is
often a bit delayed. However, we assume the delay to be
small and ignore it. We have shown previously that a gap in
the eigenvalue spectrum of the connectivity matrix leads to
synchronous chaos [5]. We linearize the perturbation around
the synchronized state and find that the eigenvalues in
question are \;exp(\), where \ is the Lyapunov exponent
of the map f(x) and \; (1<I/<N) are the N eigenvalues
of the connectivity matrix [5]. They are given by \,
=(1-€e-7y)+ecos(2ml/N) for I=1,...,N-1 and \y=1. The
N\; ({# N) are bounded between (1-2e—7) and (1-7). We
assume that all couplings are positive. Thus, the quantity
1-e—vy=0. Hence, we have 0<e=<1-7, which implies
IN|<1-7y (for [# N). As N— o, we note that \; — 1 - for
€#0. For €=0, we have an (N-1)-fold degenerate
eigenvalue 1—vy and A\y=1. The condition for synchronized
chaos is N;exp(\) <1 for [=1,2,...,N—1 and Ayexp(\)
=exp(\)>1. Thus, for y>y.=1-1/exp(\), synchronized
chaos can be obtained in the thermodynamic limit for any
value of e. (This is an exact threshold for any value of N for
€=0, while this threshold is reached from below in the limit
N— oo for €#0.) Thus, the condition for synchronization in
the limit N— oo is the same, irrespective of value of €. We
also note that the threshold does not depend on details of the
map, but just on the Lyapunov exponent of the map. For the
extreme case €=0, y=1, the synchronous state should always
be stable. The result matches with the one for coupled maps
with intermediate-range interactions in the limit of global
coupling [5].

We note that the above condition is necessary but not
sufficient for achieving synchronization. For example, for
purely globally coupled system, symmetries and number of
attractors in the system may make it impossible to reach a
synchronous state [28].

We note that though local couplings do not change critical
values, they reduce the symmetries of the system and hence
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the number of attractors. Thus, local-global coupling makes
the transition more robust. Furthermore, certain attractors
such as clustered states are present only in globally coupled
system without any local coupling. Thus, when synchroniza-
tion is lost, new states that are formed are qualitatively dif-
ferent for purely-global and local-global coupling. When we
discuss dynamics in detail, we will have an elaborate discus-
sion of this difference between the models with local-global
and purely-global coupling.
For f(x) of Eq. (1), we consider:

0<p<4,

r(x) = px(1 = x), 0<x<I; ()

) ax, if0=x<0.5, 0=a=2 (3)
V= a1-x), if0s5<x<1, Sa=s
ifo<x=<1-1/a,

h) ax+2-a,
Y= ifl-lla<x<1,

1<a<?2;
a(l-x), } “

(4)

G(x)=sgn(x)g(x]), -1=sx<1. (5)

Functions r(x), g(x), and h(x) are the well-known logistic
map, tent map, and asymmetrical tent map, respectively.
These functions map interval [0, 1] to itself and G(x) maps
[-1,1] onto itself. We note that under the evolution rule
G(x), the evolution of coupled maps is invariant under trans-
formation x — —x. The functions r(x) and g(x) are symmetric
around the maximum, while A(x) is not. If we try to define
maps over the extended interval [—1,1] from r(x) and h(x)
[say, R(x)=sgn(x)r(|x|)], we do not get a continuous transi-
tion. The map h(x) becomes discontinuous if defined over
[-1,1] using h(-x)=-h(x). Even slightly discontinuous
maps lead to a discontinuous transition. However, it is not
necessary that all continuous maps lead to continuous tran-
sitions. Symmetrized logistic maps also lead to discontinu-
ous transitions. We must mention that, unfortunately, we
have not been able to identify reasons as to when the transi-
tion is continuous and when it is not. In this paper, we will
study only maps and parameter values at which a continuous
transition to synchronization is obtained and study it as a
dynamic phase transition [29].

The map G(x) is such that if all x;(¢) are positive (nega-
tive) for all sites i at any time ¢, they remain positive (nega-
tive) at all later times. The synchronized state is one such
state. If the dynamics becomes synchronized, i.e., x;(r)
=x"(¢) for all i, all the sites will be either positive or negative
depending on the sign of x"(¢). It is also guaranteed that they
will stay so forever. Thus, synchronization will break the
symmetry, making the values of all maps positive or negative
forever. However, we do not find that this symmetry affects
the transition. The reason could be that all sites having same
sign is a much weaker condition than synchronization and
does not even require nonlocal couplings [30]. Thus, this
transition could occur at a different coupling than transition
to synchronization, making the Ising symmetry irrelevant in
transition to synchronization.
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III. SYNCHRONIZATION AS A DYNAMIC
PHASE TRANSITION

To understand the behavior of approaching the synchroni-
zation, we define the following quantities:

N

d(N,1, 7.~ ) = N7 2 [xi(0) = x4 (1), (6)
i=1
N

p(N’t’ ‘yc - 7) = N_IE |xi(t) - <x(t)> s (7)
i=1
N

PN, 1, 7.~ Y) =N (1) - (x(0))?, (8)
i=1

where (x(t))=N‘1§lZ1x,-(t). Obviously, all quanitities above
will be zero in the synchronous state and will have a positive
value in the asynchronous state. Thus, they can be consid-
ered as some kind of “order parameter.” The quantities
p(N,t,y.—v) and o*(N,t,y.~7) are, respectively, the first
and second moments of absolute difference of variable val-
ues at various sites from the synchronous state at a given
time 7. The variable d(N,r,y—7,) is different and looks at
local fluctuations in the variables. This quantity is meaning-
ful only in the presence of local couplings and shows a non-
trivial behavior. In the language of spin systems, this quan-
tity measures number of domain walls or kink density.

All the above quantities decay as a power law at y=v,
and N—. There are departures from this behavior at
finite N and for y+#vy. We define |, a,, and a; as
d(,t,0)~11, p(e,t,0)~1r%, and o2(=,t,0)~1%, re-
spectively. In directed percolation, there is invariance under
time reversal. Thus, the density of active sites at time ¢ and
probability of survival of a cluster starting from single site
until time ¢, are equivalent [4]. However, we feel that order
parameters defined above are more similar to fraction of ac-
tive sites in directed percolation. Hence, we have chosen the
symbol « for the decay rate.

The quantity d(¢) quantifies the difference between nearby
sites. We note that the coupling is not purely global and it
makes significant differences in the dynamical behavior. For
purely global coupling, it is possible to have clustered states.
We can have a group of sites iy,i,,...,i; such that
xil(t)=x,-2(t)= e =xl-k(t) at all times. This state could be
stable; i.e., it could be reached from several initial condi-
tions. We note that if one introduces local coupling, this state
does not even exist. Even if we start the system in an initial
condition where two sites have the same variable value, they
will not have the same value at the next time instant. The
reason is that they see different local neighborhood and it
affects them. For purely global coupling, the cluster state
takes over when the synchronous state loses stability [31]. In
the presence of local coupling, one cannot have a transition
to the cluster state. Thus, the transitions in systems with
€=0 and e# 0 are expected to be qualitatively different from
the viewpoint of dynamics.

We discuss the map G(x) in detail. Here the Lyapunov
exponent of synchronized state is log(a) at any time step.

036212-3



P. M. GADE AND C.-K. HU

The finite time Lyapunov exponent has zero variance and
complications due to slow convergence of the Lyapunov ex-
ponent (often slower than the time scale in question) does
not affect the convergence of the results. We have also stud-
ied logistic map at u=4, where the Lyapunov exponent is
exactly known. We also use higher iterates of the map, i.e.,
K'(x) as a mapping function so that we can have larger
Lyapunov exponent n log(\), where log(\) is the Lyapunov
exponent of (x). Thus, we can change the Lyapunov expo-
nent of the map from near zero to arbitrarily large values.

For a finite system or when the global coupling is not
exactly equal to the critical value, we find a departure from
the power-law behavior at certain time 7., which is a function
of system size N and 7y.—7. Let us first consider a case at
which y=1y,.. Here we expect the . N* for z>0 since for
bigger and bigger system sizes, departure will be observed at
longer times. The value of order parameter [say o2(N,,0)]
at the critical time 7, will be £, ~N7% since o*(N,t,0)
decays as a power law until 7.. Now if a simple scaling holds,
we can expect 02(N,t,0) scaled by N2 should be an uni-
versal function of scaled time ¢#/¢.. In other words, we pro-
pose that

d(N,1,0) = N f(1/N7), 9)
p(N,1,0) = N22f(1/N%), (10)
*(N,1,0) = NGf(t/N). (11)

We observe that above scaling indeed holds beautifully
for continuous transitions. However, before discussing finite-
size scaling we discuss raw data briefly. We illustrate the
behavior of scaling parameters for the map G(x) for various
values of a. For this map, N\=log(a) and y,=1-1/a. We
show behavior of variance o*(N,¢,0) as a function of time in
Fig. 1 for different values of a; i.e.,, a=1.01, 1.1, 1.3, and 2.
We find that for smaller values of a, variance decays as 1/ i
initially. For larger and larger values of N the asymptotic
behavior is more apparent. We note that the quantities
p(N,t,0) and d(N,t,0) also show similar departure at short
times, for smaller values of \. The 1/ behavior is followed
by a sharp drop in the value of variance at Ty(a). The vari-
ance decays as 1/¢* thereafter followed by an exponential
contraction to the synchronous state at t>Tc(N). We first
investigate behavior at large values of N. To get the
asymptotic behavior clearly, we simulate the system at a
large value of Lyapunov exponent and use f(x)=G"(x) with
a=1.99999, n=3, and A=3 log(a). We simulate system at
€=0.1 for various lattice sizes and plot o*(N,¢,0) as a func-
tion ¢ for various values of N in Fig. 2(a). Taking values of
z=2 and a3=2, we get an excellent data collapse for
0*(N,t,0) as shown in Fig. 2(b). Similar finite-size scaling
for d(N,t,0) and p(N,t,0) yields @;=3/2 and a,=1. Dy-
namic exponent z=2 for all the cases as long as €+ 0.

Even for smaller values of Lyapunov exponent, the
asymptotic behavior remains the same. We plot 02(N,7,0) as
a function of r for various values of N at a=exp(\)=1.1,
€=0.1 in Fig. 3(a). We observe the same scaling function as
in Fig. 2(b) gives an excellent scaling collapse at longer
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FIG. 1. The quantity ¢2(400,7,0) for map f(x)=G(x) with
€=0.1 and @=1.01, 1.1, 1.3, and 2. We average over 5000
configurations.

times shown in Fig. 3(b). However, behavior at short times is
indeed affected for smaller Lyapunov exponent.

Now let us alnalyze the short-term behavior. In Sec. V, we
show that (1/+¢) decay is expected in purely linear systems.
We also note that the tent map for the parameter a—1 is
very close to a linear system. For a system with smaller
Lyapunov exponent, longer time is required before the dis-
tance between closely trajectories is of the order of system
size and they fold back. When this folding actually occurs,
the system starts showing behavior expected in chaotic sys-
tems in general. Thus, we expect Ty(a)o1/\, so that for
larger values of a (i.e., N\), Ty(a) —0 and the long-term be-
havior becomes very clear.

To investigate the early behavior, we simulate the system
for €=0 so that finite-size effects do not interfere with the
analysis. In Fig. 4(a), the quantity 02(20,7,0) is plotted as a
function of time for map f(x)=G(x), for €=0 and a=1.05,
1.2, 1.5, and 1.99. We plot the same quantity as a function of
Nt in Fig. 4(b) and find that the drop occurs at approximately
the same value of \r. Thus, we can infer th_at the time Ty(a)
at which there is departure from initial 1/t behavior scales
as 1/\ for the map G(x). This is what we expected from the
argument given in the previous paragraph.

We believe that z=2 for e#0 is related to the fact that
true value of global coupling required for synchronization
for any finite N is slightly lower than one required for an
infinite system. The critical value needed for synchronization
at finite N, y.(N) differs from 7y.(%) by €1-cos(27/N)]
~ €/N?. If we assume that the critical saturation time scales
inversely with the difference of the value of y from critical
value, it follows that z=2. Let us test this hypothesis
about critical saturation time by investigating system for
Ye—y#0. We expect o2(,t,n)~ 57%g(tn). [If saturation
time 7. scales as 7!, the width at saturation time is
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FIG. 2. (a) The quantity 6>(N,z,0) is plotted as a function of ¢
for map f(x)=G3(x) with a=1.999 99 and €=0.1 for various lattice
sizes N. Averaging is done over 10* configurations. (b) The quantity
ol(N,t,O)N4 is plotted as a function of /N2,

£%~n%. We do find that o%(c,%, 7)< 7% with Bz3=as.]
Now, if we scale the width by saturation width and time in
units of saturation time, we should get a scaling collapse. For
Ff(x)=G3(x) at a=1.999 99 and for N=10*, we simulated the
CML for various values of #, and the results are shown in
Fig. 5(a). (We simulate for large N so that finite size effects
do not interfere with the results) Now we plot
0*(10*,¢,m)/ 17 as a function of t/(1/7m)=t7n, and we get
excellent scaling collapse in Fig. 5(b). This implies that
B3=2, which is the same as a5 for this system. We can define
B, and B, in a similar manner; i.e., d(,%,7)x 7’ and
P(Ocaw, 77)“ 7752-

As illustrated in various figures above, the time required
for synchronization at y=1y, or the time in which the order
parameter saturates to a nonzero value for y<<7, depends on
value of N and of y.—7. Using an argument similar to one
used above, we expect that 8;=«;, i=1,2,3. We have already
demonstrated this for 0*(N,t,y,— 7). It is also true for other
two order parameters. We have verified that a,=8,=1 by
simulating system for various lattice sizes and various values
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a)

&(N,1,0)

S(NLO)N*

16° 10* 107 10°

FIG. 3. (a) 6*(N,t,0) for various lattice sizes for f(x)=G(x)
with a=1.1 and €=0.1. Averaging is done over 10* configurations.
(b) The quantity o2(N,z,0)N* is plotted as a function of #/N>. For
large 1/N?, we see a good data collapse at later times.

of y. We note that p(N,t,y.—7) and ¢*(N,t,y.—7) are re-
lated order parameters. They are the mean and the variance
of the probability distribution K(w) of the quantity w=|v|,
where v;=x;(r)—(x(z)). Since the distribution at each site is
expected to be the same, we drop the site index and average
over all sites. In Fig. 6(a), we plot K(w) at various times. We
use the logistic map with f(x)=g(x), u=4, N=400, €=0.1,
Y="7.. and average over 10* configurations. We can see that
the raw data have an initial power-law decay followed by an
exponential. We postulate that probability K(w) to be a
gamma distribution, ie., K(w)=A"w"exp(-=Aw)/T(r),
where A=t. It follows that K(w)/A=(Aw)"exp(
—Aw)/T'(r). If the ansatz is truly satisfied, we should observe
a scaling collapse by plotting K(w)/A=K(w)/t as a function
of Aw=wr. This collapse is demonstrated in Fig. 6(b). For
the gamma functions, it is known that the mean goes as
1/A=1/t and variance goes as 1/A?=1/#>. Hence, we have
a,=1 and az=2. It is interesting that the distribution of dif-
ference variables takes this simple form for different systems
when they are near the critical point.
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FIG. 4. (a) The quantity 0>(20,¢,0) is plotted as a function of
time for map f(x)=G(x), for e=0 and a=1.05, 1.2, 1.5, and 1.99.
Averaging is done over 8000 configurations. (b) The same quantity
as above is plotted as a function of N\z. We can infer that the time at
which there is departure from initial 1/t behavior in tent map
scales as 1/A\.

Now we discuss d(N,t,y.—7) in detail since it looks at
local details of the system. We note that we can write
xi(1) = x40 (1) as [x(6) = (x(0))] =[x () = (x(0))]=v,(1) =044 (2).
The probability distribution R(v) for [x;(r)—(x(¢))] is sym-
metric around zero and is related to probability distribution
K(w) of the absolute value of this variable. In particular,
R(v)=R(-v)=K(|v[)/2. Thus, if the variables x,(f) and
x;41 () were independent, we could get information about this
order parameter by performing convolution of the probability
distribution R(v). However, we do not need an entire
probability distribution of |x;(£)—x;,,(f)|. We are interested
only in dependence of its mean value on 7. Hence, we
employ a simpler approach. Let us consider a quantity
UN.t,7.~y)=2N[x()-x;, (0. Now  UN.t,y-7,)
=3V [v(t)=v;,,()]*. We know the variance of quantity v,(t)
or v;,,(1), which is given by 0*(N,t,y.—7), decays as 1/1>.
We also know that for independent variables X and Y,
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S(N,tm)

SN LA

FIG. 5. (a) The quantity (N7, 7) is plotted as a function of ¢
for various values of 7. We have taken N=10% f(x)=G3(x) with
a=1.99999 and e=0.1. Averaging is done over 4000 configura-
tions. (b) The quantity o(N,, 7)/ 7% is plotted as a function of 7.

Var(aX+bY)=a? Var(x)+b* Var(Y), and thus the quantity
U(N,t,y,~1) is expected to decay as 1/¢% if v(t) and v,,,()
were independent. (We assume that they are identically dis-
tributed.) Thus, \;"U(N ,f,v.—7) behaves as 1/¢ for the case
of independent variables. Now, what is the relation between
d(N,t,y.~v) and U(N,t,y,~7)? While one is the sum
norm for the variables 0,=(x;—x;,;), the other is the Euclid-
ean norm for the same set of variables. It can be shown that
the sum norm can be bounded from above and below by
constant multiple the Euclidean norm [32]. These constants
do not change in time. This implies that d(N,z,y.—7) is
bounded between by A\ U(N,t,y.—vy) and B\ UN,1,v.—7),
where A and B are positive constants. Given that
JU(N,t,y.—7y) goes as l/t, d(N.t,y,—vy) cannot decay
faster or slower than 1/¢. Thus, we expect it to decay as 1/¢
implying «;=1. This expectation (and underlying assump-
tion that nearby sites are independent for all practical pur-
poses) is indeed fulfilled for the case €=0.
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a)

K(w)it

FIG. 6. (a) The probability distribution K(w) of w, where w
=|x;(t)=(x(¢))] is plotted for various times. We use logistic map as
f(x) and parameters used are u=4, N=400, €=0.1, and y=7,. Av-
eraging is done over 10* configurations. (b) For the data in (a), we
plot K(w)/t as a function of wt. The collapse clearly indicates that
the K(w) is a gamma distribution.

However, in presence of nearest-neighbor couplings, the
values at nearby sites are highly correlated and we observe a
different behavior. We use f(x)=G(x) with a=1.9999,
A=log(a), and €=0.1. In Fig. 7(a), we show the behavior of
d(N,t,0) as a function of ¢ for various values of N. For
a;=3/2 and z=2, we observe an excellent scaling collapse
that is displayed in Fig. 7(b). To find the value of B3;, we
simulate the system at values of global coupling strengths
that are slightly lower than critical coupling strength. We
have shown d(N,t, ) for N=10* and various values of 7 in
Fig. 7(c). Using the scaling function defined above, we ob-
serve an excellent scaling collapse for 8;=3/2 and z=2 [see
Fig. 7(d)]. The fact that a; # a, shows that the short-range
fluctuations in the variable values decay in a manner differ-
ent than their fluctuations from the global average. The in-
vestigations of short-range fluctuations makes sense only in
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the presence of local couplings. In the next section, we show
that this behavior changes completely for e=0, showing the
subtle effects that the presence of local coupling produces,
though it does not change the critical coupling strength in the
thermodynamic limit.

IV. PURELY GLOBAL COUPLING

As mentioned above, one obvious difference between the
cases €=0 and e+ 0 is the possibility of clustered states in
desynchronized regime for e=0. We would like to mention
one more difference in the dynamics of these two cases by
looking at eigenvalue distribution at the critical point when
the synchronized state becomes marginally unstable. For the
case €=0, the eigenvalue spectrum is (N—1)-fold degenerate
and all eigenmodes become marginally stable for y=1y.. On
the other hand, for €#0, the long-wavelength eigenmodes
corresponding to /=1 and /=N-1 are unstable modes when
synchronization is just lost. Thus for €=0, all the modes
become marginally stable at the same parameter value lead-
ing to desynchronization for y<<7.. On the other hand, for
€#0, only long-wavelength modes become unstable when
synchronization is lost. Thus, we do expect and observe cer-
tain dynamical differences, in the cases of purely global cou-
pling, and when one has local as well as global coupling.

Setting the nearest-neighbor coupling to zero (e=0), our
system reduces to that with purely global coupling. In this
case, we observe that z=0 and do not really see any depen-
dence on finite size. If we simulate the system at y=1y,, we
observe excellent power laws for very long time. Reduction
of z for nonlocal couplings is not surprising. For example,
Mukherji and Bhattacharjee [33] studied the KPZ equation
with nonlocal interactions and found reduction in dynamical
exponent z. Since we are trying to make a comparison with
directed percolation, we also note that directed percolation in
the presence of nonlocal couplings was studied by Hinrich-
sen and Howard [34]. In the limit of coupling that decays as
1/r in one dimension, they found B=a=1 and z=0. These
values are the same as those for the order parameter
p(N,t,y—1v,). Since z is already reduced to zero when cou-
plings decay as 1/r, we expect it to be zero for the case of
purely global coupling. (We also note that for Ising model, it
is known that the mean-field theory is exact for ferromag-
netic interactions that decay as 1/r* for a<d [35].) In this
work, we have only studied the nonlocal coupling in the
form of a global field. However, some researchers have con-
sidered fields that decay with distance and chaotic synchro-
nization is observed in one dimension only when couplings
decay more slowly than 1/r [12]. Thus, we feel that it is a
valid comparison. As mentioned above, if p(N,z,y.—7) is
considered an order parameter similar to active sites in di-
rected percolation, we have exponents that are the same as
anomalous directed percolation in the limit of global cou-
pling. For the mean-field limit of directed percolation, the
exponents are S=a=1 and z=2, which are the same as ones
observed for e# 0 in the CML studied in this paper.

As mentioned before, the behavior of quantity d(N,¢,0)
changes completely in the absence of local coupling. The
quantity d(N,z,0), which measures the absolute difference
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FIG. 7. (a) We show the behavior of d(N,,0) as a function of ¢ for various values of N. We use f(x)=G(x) with a=1.9999 and €
=0.1. We average over 8000 configurations. (b) We plot d(N ,1,0)N? as a function of ¢/ N? for the above data. The scaling collapse indicates
that a;=3/2. (c) Here we show d(N,t,7) for N=10* and various values of 7. As in (a), we use f(x)=G(x) with a=1.9999 and €=0.1. We
average over 8000 configurations. (d) The quantity d(N,z, )/ 77°/* is plotted as a function of 7. The collapse indicates that 8;=3/2 as well.

between the nearest neighbors, is not a meaningful quantity
in the absence of local coupling since “neighbors” become
undefined in that case. The hypothesis of independence be-
tween nearby sites becomes more reasonable if there is no
coupling between nearby sites and the 1/¢ decay that we
expected by assuming nearby sites to be independent is ex-
pected to hold for €=0. Thus, a;=1 for purely global cou-
pling and % local-global coupling. To demonstrate this fact,
for the local-global coupling system, we define a quantity,
di(N,t,7) =3 [x () —x,1()]. We note that d (N,t,7)
=d(N,t, 7). We observe that for large k, dy(N,r,0) decays
with exponent 1/¢ even for local-global coupling. We show
the behavior of d(N,#,0) and dsy(N,z,0) as a function of
time in Fig. 8. We use f(x)=g(x), a=2 and average over
5000 configurations. There is a clear difference in the behav-
ior of d(N,t,0) and dsy0(N,¢,0). Thus, the difference be-
tween points that are close decreases with a different expo-
nent than the difference between far-off points for the local-

global coupling. To summarize, we can say that there are
some major differences in critical behaviors for local-global
coupling and purely-global coupling. There is an anomalous
behavior at short range in local-global coupling and the dy-
namic exponents z are 2 and 0, respectively, for local-global
and purely-global couplings.

V. SYNCHRONIZATION OF NONCHAOTIC SYSTEMS

Now let us study the behavior of this system without any
nonlinearity; i.e., consider the marginal case f(x)=x, for
which y,.(0)=0 for global coupling. We look at evolution of
the system at this critical value. For =0, system is simply an
identity mapping and roughness does not change in time. The
system for €#0 is linear and could be solved by Fourier
methods. We find out the leading behavior for the case
e=1. Roughness is the sum of powers in Fourier modes other
than the synchronized mode. Assuming the initial distribu-

036212-8



SCALING AND UNIVERSALITY IN TRANSITION TO...

d,(Nt,0)

PHYSICAL REVIEW E 73, 036212 (2006)

FIG. 8. For a local-global coupling system,
the quantities d;(10%,7,0) and dsy(10%,1,0) are
plotted as a function of ¢ [Since di(N,t,7)
=SV [xilt)=xpi ()|, dy(N,1,0)=d(N,2,0).] We
use f(x)=g(x), a=2, and average over 5000 con-
figurations. Lines 1/¢ and 1/¢! are also drawn as
a guide to the eye.
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tion to be random, we find that for e=1, roughness
*(N,1,0)~ =" cos?(2mi/N) [since each mode decays as
cos(2i/N) and we assume that each mode had equal power
in initial conditions]. For a large N, we can approximate the
sum by an integral that has value 2#{(2t—1)!1/(20)!!]
=2a{2t!/(201)?]=2m272[2¢!/(¢!)*]. To the first order,
n!~ \e"%(n/ e)", which implies that roughness should decay
as 1/\1. Thus, the value of a3 is 1/2. We verify this behavior
numerically. We find that @;=3/4 and a,=1/4. Similar be-
havior is obtained for other values of e. The average time
required for synchronization scales as 1/L> and we can ob-
tain nice scaling. However, in presence of global coupling,
this average time is considerably shorter and does not scale
as 1/L* We note that the critical value of global coupling is
zero (,=0) in this system.

However, this short-time behavior is not universal. It de-
pends on the nature of the map. We simulated CML for
Sf(x)=x—x". This map has a marginally stable fixed point at
x=0. We find that at y=v.=0, €e#0, we get a power-law
decay of various order parameters. However, «;, a,, and a3
vary with n. We simulated this map for N=4000, y=0, and
e=1. Figure 9(a) shows behavior of 6*(N,t,0) as a function
of ¢t for various values of n. It is clear that roughness decays
slowly as one increases n. However, it still decays as a power
law. In Fig. 9(b), we have plotted a; as a function of n. We
observe that the exponent decays monotonically with n.
Thus, exponents are not universal in synchronization of non-
chaotic system.

VI. PERSISTENCE IN COUPLED MAP LATTICES

In the past decade, persistence in spatially extended sys-
tems has been a matter of extensive study [36]. For spin
systems, persistence at time ¢ could simply be defined by
counting the number of spins which did not flip even once
during time evolution until time t. For dynamical systems,

there have been attempts to define persistence by coarse
graining the system suitably. Menon et al. coarse grained the
coupled circle maps by partitioning phase space points with
reference to the fixed point [37]. After partitioning the sys-
tem as above, they went on to define persistence in the same
way as in spin systems. They just defined persistent sites at
time ¢ as those which were above (below) the fixed point at
time r=0 and did not attain value below (above) the fixed
point at time .

The reference point for departure from chaotic synchroni-
zation is obviously a synchronous state and not a fixed point.
We know that in synchronous state, each space point has the
same value as average; i.e., x;(t)=(x(¢)). Thus, we compare
with (x(r)). If we follow the prescription of Menon er al.
entirely and define persistence P(¢) by counting the fraction
of sites that were above (below) the average and stayed
above (below) average at all times till time 7, it does not
reflect transition to synchronization in any manner. Thus, it is
necessary to modify it suitably so that it reflects the dynamic
transition we are interested in. Now let us consider a situa-
tion in which one is considering the synchronized period-3
state. Natural definition would be to check if the spin values
return to their old values after every three iterations. How
can one extend this definition to a chaotic system? Since the
system is chaotic, we do not know how it should behave.
Hence, we impose some kind of self-consistency criterion.
The generating partition is not known for the coupled system
and we do not know how the system should evolve. We
overcome this difficulty by defining persistent sites as those
which have not departed from “normal” behavior. What is
“normal?” Let us take a clue from sociology and define that
whatever majority does is normal. We define sites which
have values greater (less) than (x(0)) initially as those with
flag 1 (flag —1). These two groups are decided from the
initial conditions at =0 and never mixed; i.e., sites with flag
1 never become —1 or vice versa. Now we do not know how
these sites are supposed to behave. Thus, if at time r=1 ma-
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FIG. 9. (a) The quantity 02(4000,7,0) is plotted as a function of
t for f(x)—x—x" for n=1.5, n=2, and n=4. We average over 10
configurations. (b) Exponent «; is plotted as a function of n for the
convergence to synchronous fixed point of the map f(x)=x—x".

jority of the sites with flag 1 have stayed above (x(1)), we
will set the flag of minority sites as 0 and keep the flag of the
rest of the sites unchanged. We check the same for sites with
flag —1 to see if majority of them are above or below (x(1))
and set the flag of minority sites to zero. We repeat this
process and keep counting the number of persistent sites as
sites which have a nonzero flag. In Fig. 10, we display an
excellent power law at critical point over four decades with a
critical exponent of 0.4. We have nonlocal interactions in the
system and inferring about persistence from the behavior of
all the sites seems to work well.

Unlike other exponents studied in the paper, persistence
exponent does not seem to be universal. We found that ex-
ponent is around 0.3 for coupled logistic maps at u=4. This
is not surprising since the persistence exponent is known to
be far less universal than the other three exponents that typi-
cally characterize scaling behavior in interacting stochastic
systems. The reason is that persistence probes the full, in
general non-Markovian, time evolution of a local fluctuating
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FIG. 10. Fraction of persistent sites P(¢) as a function of ¢ at
various values of 7 for f(x)=G>(x) with a=2, €=0.1, and N=10°.
Averaging is done over 1000 configurations. We observe a clear
power law at critical value of coupling 7=0.

variable, such as a spin or density field, from its initial state
[36]. We note here that Lemaitre and Chaté also found that
persistence exponent for phase ordering properties of lattices
of band chaotic maps are not universal but vary with the
value of coupling constant [38]. Swift and Bray also found
that survival time distribution for an inelastic collapse shows
power-law decay at long times with a nonuniversal exponent
that depends on coefficient of restitution [39].

Obviously, there can be several possibilities for defining
persistence in spatially extended system. If we follow the
definition by Menon et al., it does not reflect the transition to
synchronization in chaotic systems while our definition
shows a nice power-law decay at the critical point. It appears
that the definition should be in accordance with the transition
being investigated. Previous investigators have also defined
it depending on the dynamic transition they are interested in.
We feel our definition is well suited for describing transition
to chaotic synchronization. Unfortunately, since we do not
see previous instances where persistence is defined in a simi-
lar manner, it is difficult to have a meaningful comparison
with other stochastic or dynamical transitions.

VII. CONCLUSIONS

Finding critical exponents, determining universality class
for dynamic phase transitions in spatially extended dynami-
cal systems and comparing them with known transitions in
stochastic systems is a relatively unexplored but interesting
and important problem. Knowing that two apparently dis-
similar problems fall in the same universality class helps us
to identify the crucial factors that determine the critical be-
havior. In this work, we have drawn parallels between tran-
sition to synchronous chaos and directed percolation which
is a nonequilibrium transition in stochastic systems. We stud-
ied the transition to synchronous chaos in coupled map
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lattice with local-global and purely global couplings as a
dynamic phase transition. We find that critical exponents for
this transition in the presence of local-global coupling match
with those of mean-field limit of directed percolation; i.e.,
a=B=1 and z=2. For purely global couplings, the exponents
are a=L£=1 and z=0. The exponents a and S are the same as
for mean-field case, while reduction in z to zero is observed
in case of directed percolation in the presence of long-range
couplings in the limit of coupling decaying as 1/r% [34].
We note that long-range and nonlocal couplings are
needed for the self-synchronization of all the elements of the
same systems. We believe that the transition to synchronous
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state, if continuous, should be generic irrespective of how the
nonlocal field is incorporated, either by explicit mean-field or
by small-world type connectivity or long-range correlations
[5]. However, further studies are required to test this hypoth-
esis.
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