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Introduction
 to 

Fourier transform
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Fourier series

 Decompose f(t) in terms of sine and cosine bases function

Similarity with i, j and k unit vectors. Unique representation in 3-D

Euclidean space: 

Orthonormal sets:  

Orthonormality condition: 
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Fourier series

 Function f(t) is periodic

Finite energy

Fourier series
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Fourier series

 Orthogonal basis 
sets:
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Fourier series

Extraction of coefficients:
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Fourier series: Interpretation

A mathematical prism
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Fourier series: Interpretation
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Fourier transforms (FT)

f(t): not periodic, but decreases at infinity

Forward FT:

Inverse FT:

General notation
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Fourier transforms: specific notation

Direct (Forward) transform:

 X(F) = ∫   x(t) e(-j2π Ft) dt

Inverse transform:  

 x(t) = ∫  X(F) e(j2π Ft) dF
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Fourier transforms: Examples

Fourier transform of rectangular train pulse 
 defined as

x(t) = { A, |t| ≤   ґ/2 
     |t| ≥  ґ/2}
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Fourier transforms: Solution

              ґ/2

X(F) = ∫    A e(-j2πFt)dt = Aґ {sin(πFґ)/ (πFґ)}
           -ґ/2
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Power spectrum: Parseval’s theorem

            +∞                   +∞ 

             ∫   |X(F)|2 dF = ∫  |x(t)| 2 dt
          -∞                    -∞

            Total Power is conserved. 
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Fourier transforms: disadvantages
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Fourier transforms: disadvantages

What happens after removal of handful of Fourier coefficients?

                                        Gibb’s phenomenon
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Fourier transforms: disadvantages

Conclusions: 

Not suitable for transient signals with sharp changes. 

Sine and cosine basis sets: de-localized  

Time information difficult to retrieve. 

Solution: Use a thorn to remove a thorn!! 

Use Wavelet transforms
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Discrete Fourier transformation (DFT)

 Discrete Time domain

Complexity: O(N2)
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Fast Fourier transformation (FFT)

 Danielson and Lanczos Leema (1942)
 

Divide and conquer !!
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FFT: Radix-2 Algorithm

Forward transform:
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Inverse transform
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Symmetry property

Periodicity property
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Divide and conquer rule
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 Periodicity property

F1(k) & F2(k) = (N/2)2 complex multiplications each
Wk

N
 = (N/2) complex multiplications

Total = N2/2 + N/2
Recursively apply the algorithm
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Thank you

          sachinn@cdac.in 

mailto:sachinn@cdac.in
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